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In  this paper we consider the interaction of two unequal solitary waves travelling in 
opposite directions. The interaction equations are derived from the perturbation 
expansion of the Euler equations, which lead to the Boussinesq equation a t  lowest 
order. These equations are recast to obtain two weakly coupled KdV equations which 
are solved by the method of inverse scattering. We show that the amplitude of each 
solitary wave after interaction is reduced. This change in the amplitudes is shown to 
be fifth order in E ,  the order of magnitude of the amplitude of the waves. This is in 
agreement with the change of amplitude produced by the interaction of two equal 
waves which arises in the reflection of a wave by a vertical wall. 

1. Introduction 
The equations for the propagation of water waves of small amplitude and long 

wavelength were first derived by Boussinesq (1872) and Korteweg & De Vries (1895). 
The Boussinesq equation allows waves to propagate in opposite directions while the 
Korteweg-de Vries (KdV) equation describes only the unidirectional propagation of 
waves. Both equations have solitary wave solutions which are functions of a single 
phase variable. Byatt-Smith (1971) showed that while the Boussinesq equation 
admitted solutions that consisted of two such solitary waves of arbitrary amplitude 
travelling in opposite directions, the equation itself does not separate. It becomes 
necessary to add to the superposition of the two solitary waves a smaller-order 
interaction term in order that the travelling wave terms separate into functions of 
their respective phase variables. For the Boussinesq equation itself the criterion of 
separability is sufficient to determine the interaction term to any desired order. 
Moreover the interaction term can be expressed as a uniformly valid expansion, this 
result presumably being a consequence of the fact that the Boussinesq equation is 
integrable. Miles (1977) showed, in the more general case of obliquely interacting 
waves, that  this interaction could a t  lowest order be expressed as a phase shift and 
a transient term. 

Su & Mirie (1980, 1982) completed this procedure to the third order for waves 
travelling in opposite directions. However, it becomes apparent that the expansion 
procedure, which is valid for a single wave, is not uniformly valid for all times for the 
interaction terms. This is because a t  higher order the predicted phase shift is not 
constant and results in a deformed wave after interaction, which does not satisfy the 
steady equation for a single wave. The distorted wave eventually separates into a 
steady wave and a dispersive tail. 

In a recent paper Byatt-Smith (1988) corrected the expansion procedure to allow 
for slowly deforming waves by deriving coupled perturbed KdV equations for each 

19-2 



574 J .  G .  B. Byatt-Smith 

wave. In that paper he solved the problem of a solitary wave reflected by a vertical 
wall and showed that the reflected wave was reduced in amplitude. This reduction 
was shown to be fifth order in e, the order of magnitude of the amplitude of the wave. 
The result of this change of amplitude is that a dispersive tail of order e3 is produced 
behind the reflected wave. The paper by Byatt-Smith extended the result of Su & 
Mirie (1980) who obtained the dispersive tail but could not theoretically predict any 
change in amplitude. 

The case of a reflected solitary wave is equivalent to two equal waves travelling in 
opposite directions, assuming that symmetry breaking perturbations are not 
unstable. In this paper we consider the case of two solitary waves of different 
amplitudes initially far apart which are travelling towards each other. As in Byatt- 
Smith (1988) we derive, from Euler equations for fluid flow, interaction equations 
which are perturbations of the KdV equations. It is shown that the loss of amplitude 
of each wave during interaction is again of fifth order and that the dispersive tail 
behind each wave after interaction is third order. We also show that at this order 
there is no transfer of energy between the two waves, so that after interaction the 
sum of the energy in the reduced solitary wave and in its dispersive tail is the same 
as the energy in the original wave. 

2. Basic equations 
We consider unsteady, two-dimensional irrotational motion of a fluid. The motion 

is assumed to  be such that all disturbances tend to  zero a t  infinity where the depth, 
h, is uniform. It will be convenient to  choose units so that 

where g is the acceleration due to gravity. 
Let (2, y )  be horizontal and vertical coordinates, t the time, tj the free-surface 

displacement and q the velocity potential. The boundary-value problem is then 
described by 

(Pm+plyy = 0 (0 < Y < 1 +7)7 (2 .2 )  

v y = o  (Y = O ) ,  ( 2 .3 )  

Tt+Q)zTz-v)y = 0 (Y = 1+7L (2.4) 

and 7+vt+&?J:+$P; = 0. (2.5) 

Following Miles (l977), Su & Mirie (1980) or Byatt-Smith (1987a, b,  1988) we look 
for a solution of the form 

where D = a/&. 
In  terms of and W ( s ,  t )  = a@/ax, (2.4) and the 2-derivative of (2.5) can be written 

as 
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where a, = a/at .  
By adding and subtracting these two equations they may be rewritten as 

We now consider two solitary waves initially far apart, of small but finite 
amplitude travelling towards each other. In  the absence of any interaction terms 
each solitary wave will be a function of a single phase variable and we introduce new 
coordinates El = €k, (z -c , t ) ,  6,  = €:k,(X+C,t), (2.11) 

where 0 < E Q 1 is a small parameter representing the order of magnitude of the wave 
amplitudes which are given by €aai (i  = 1 , 2 ) .  

The respective wavenumber and phase velocities are given by d k i  and ci.  To obtain 
equations describing the two waves and their interaction we introduce the notation 

a, = aiag,, a, = aiat,, (2.12) 

and the change of dependent variable 

a = $ s ' ( W + y ) ,  ,5= !g-'(y-W). (2.13) 

In terms of these variables (2 .2)  becomes 

2 4 ~ ,  + c,) k2 a2 a+ (k, a, + k2 a,) F+ = 0, 

2 4 ~ ~  +c,) k, a, p+ (IC, a, + k, a,) F- = 0, 
and 

where now? 

(2.14) 

(2.15) 

Following Byatt-Smith (1988) we propose to model the interaction by deriving 
equations for the unsteady travelling wave part of the solutions. This will take the 

t The minus sign before the first term of (2.16) replaces the T sign which is in error in the 
corresponding equation. (3.6), in Byatt-Smith (1988). 
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form of approximate KdV equations which can be analysed by the method of inverse 
scattering. To do this we retain only the terms that lead to singular behaviour as 
t + + 00, (See Byatt-Smith 1988 for further details of this procedure.) A preliminary 
requirement in deriving the interaction equations, see for example Su & Mirie (1980), 

(2.17) 
is that 

ci = l + & ~ ~ + O ( e ~ ) ,  k: = 3ai+O(e). 

The interaction equations are then 

4k, a,a + e k , ( ~ ,  a;a + 3a a, 01 - a, a, a) = ~zk,(901 - 4a,) a, 018, 
4k, a, p+ &,(a, a;p+ 3pa2 p a z  a,p) = e2k2(9p- 4a,) a2pa. 

(2.18) 

(2.19) and 

We transform (2.11) and (2.12) to approximate KdV equations by writing 

a = - 2a, u, p = - 2a, v, r1 = k, a2 4,/(2k,) and r, = k, a, ec2/(2k2). (2.20) 

In terms of these variables (2.11) and (2.12) are 

and 

(2.21) 

(2.22) 

The transformation given by (2.20) has been chosen so that (2.21) and (2.22) 
coincide as far as possible with those derived by Byatt-Smith (1988) (cf. (5.1) and 
(5.2) of that paper). 

3. The interaction of two solitary waves 
Equations (2.21) and (2.22) are both perturbations of the KdV equation connected 

via the interaction terms. These equations may be solved using the method of 
perturbed inverse scattering developed by Karpman & Maslov (1977 a%), Keener & 
Mclaughlin (1977) and Kaup & Newel1 (1978) and used by Byatt-Smith (1988), which 
should be consulted for further details. 

The general solitary wave solution of the unperturbed equation 

= 3.iia,a-9;.22.+aa1.ii, (3.1) 

(3.2) 

is given in terms of the single variable 

6,  = q 5, - tc.: - K, )  7 2 ,  

and takes the form 
Go(@ = -~~!sech~+6, .  (3.3) 

In our case we have defined coordinates in which the unperturbed wave before 
interaction is stationary so that K~ = 1. We denote this solution by uo so that 

uo(E1) = -$sech2 ($6,). (3.4) 

To obtain the change of amplitude we must expand u to second order and proceed 
by writing 

(3.5) 

The term u1 represents the dispersive wave train and satisfies the linearized 
equation 

3 = 3a,(u1 uo) -3; u, ++al u1 + e-1a2(18u0 + 4) a, uo vo, (3.6) 
a 7 2  
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Since, to this order, there is no change of amplitude due to interaction, we may 
obtain the solution of (3.6) from the solution U,((,, T ~ )  of the homogeneous equation. 
This is expressed as 

Up( [, , = Fl ( El, k) e-if”Tx+ik61, 

where p = -(k+k3),  (3.8) 

and F, = i k ( k 2 - 1 ) - 4 i k u , - 2 6 , u , + 2 k 2 ~ , u , / u , .  (3.9) 

The solution u1 is then expressed as a convolution integral in the form 

~ , ( 5 , , 7 ~ )  = ---la2 w o ( 2 k 2 ~ , / ( k , a , ~ ) ) a o ( k ) F l ( ( , ,  k) e-~iP(Ta-To)+iLS1d?Odk, 

where 
k 

sinh nk ’ e-ikb,([l) dt, = -- (3.11) 

and Pl = klalPP2. (3.12) 

The first approximation to (2.22) is obtained in a similar fashion and 

v1 =’ $k2 k;’a, u2,f:m J6y u,(Eo) @o(k)F2([2, k) e-~i~~(~l-~O)filC~Zd~odk. (3.13) 

We proceed to the next approximation by introducing (3.5) into (2.14) and 
linearizing with respect to uz. This gives the equation 

au, = 3 a l ( u 2 u , ) - ~ ) : u 2 + ~ 1 u 2  
a 7 2  + a2s-y( 1 8u, + 4) a, uo 21, + a,(( i8U0 + 4) ul) vo> + 3 4  u;. (3.14) 

In order to obtain a uniformly valid solution we must first account for the change of 
amplitude of the solitary wave. This arises because the inhomogeneous term in (3.14) 
is not orthogonal to uo when integrated over (- m, 00). It is this integral that governs 
the rate of change of the amplitude. Byatt-Smith (1987a,b) shows that the 
application of the method of perturbed inverse scattering gives rise to the equation 

00 

= h 2 e 3  ~ ~ ~ ~ u o ( 1 8 u o + ~ ) ~ l ~ o ~ l - ( ~ 8 ~ o + ~ )  ~ l ~ l ~ o ~ o l d t , ,  (3.15) 

the contributions from the term 3a1(u3 being of smaller order. The total change in ,vl 

during interaction is then given by 

= &€“a; uy, + u2 a; 12), (3.16) 



x e-h(Sp-So)+% d,& dk d[, #,, (3.18) 

Byatt-Smith (1988) evaluates these integrals to obtain 

I ,  = 0 to O(s), (3.19) 

and I ,  = -40/21 to O ( S ) .  (3.20) 

Thus [K1l = - & ; u 2 s 4 + ~ ( S 5 ) .  (3.21) 

Using the definition of the individual waves (2.6) and the change of variable (2.13) 
the unscaled amplitude a", is given by 

a", = €ulK;, (3.22) 

so that 

(3.23) 

The importance of (3.19) is slightly obscured by the symmetry in the case of two 
equal waves but is easily interpreted in the case of unequal waves. We now show 
using energy arguments that the term involving the integral I ,  in (3.16) represents 
the exchange of energy from one wave to the other while the term involving I ,  
represents the transfer of energy from one wave to its own dispersive tail. Thus (3.19) 
implies that during interaction no energy is transferred between the two waves at  
this order and that the result of the interaction is to redistribute the energy of the 
solitary wave into a smaller wave and a dispersive tail. 

To leading order the energy of a solitary wave of amplitude 6 is given by 

m co 
El ,  = ( r 2 d x  = 4 e 2 4  ( u:e-tk;ldf; = const x (€a# 

J -a J -m > 
= E 0 a"' f .  (3.24) 

Using a modified version of (3:23) for the case I ,  =!= 0 the change of energy of the 

(3.25) 

On the assumption that the solitary wave and its dispersive tail are well separated 

solitary wave is 
[El,] = go a"![a",] = -&E0 G![a; G;',/I, + a"; 41. 

the energy in the dispersive tail is 

(3.26) 

This integral is easily associated with the second term in (3.25) by consideration of 
the symmetric case of two equal waves. Thus the first term represents the energy 
transfer from wave to wave which by (3.19) is zero. 
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